

Semiconductor Power Electronics Technology

Professor Alex Q. Huang, Ph.D. & IEEE Fellow Dula D. Cockrell Centennial Chair in Engineering University of Texas at Austin

Email: aqhuang@utexas.edu Tel: 512 232 6647

Nov. 14, 2017

CEM Industry Advisory Panel Meeting

WBG Material Advantages

Data source: www.ioffe.ru/SVA/NSM/Semicond/

There are other WBG materials being actively researched, including AIN, GaO, Diamond

Power Semiconductor Milestones Decades of innovations

 First BJT was made in 1948 [3] Fairchild BJT [3] MOSFET was patented in 1959 [4] 	 Power MOSFET was commercialized in 1980s [5] First IGBT was reported and commercialized in 1983 [6] 	 First IGCT was reported 1996 in [17] First ETO was reported [23] First CoolMOS commer in 1998 [8] 	 in 1.2 kV SiC JFET was commercialized in 2008 in 1998 12 kV SiC IGBT reported in 2008 [11] italized First 4.5 kV SiC ETO reported in 2009 [19] 	 EPC GaN device was commercialized in 2009[21] First 600 V GaN device reported in 2013 [22] 		
1960	1980	1990 20	00 2010			
 Thyristor/SCR commercialized in 1958 [17] First GTO was reported in 1962 [17] 	 SiC Diodes were reported in 1992 [7] First SiC GTO was reported in 1997 [18] 	 SiC diode was commercialize in 2001[9] Si IGBT + SiC SBD hybrid module reported in 2003 [15] 10 kV SiC MOSFET reported in 2003 [10] 	 d 1.2 kV SiC MOSFET commercialized in 2011 1.2 kV SiC MOSFET module released in 2012 [16] Si IGBT + SiC SBD hybrid models of the second second	 15-22 kV SiC GTO was reported in 2013 [12,13] 22 kV SiC IGBT was reported in 2014 [14] 22 kV SiC ETO was reported in 2015 [20] 		

Device concepts are more or less settled on several well established concepts

thyristor (symmetric and asymmetric, forced turn-off or line commutated) IGBT

MOSFET (or other FET variations)

Schottky diode

PN junction diode

Next major trend: move from Si to WBG

1st wave: Si MOSFET/IGBT

2nd superjunction device

3rd moving to WBG:MOSFET as the dominant device concept

(1979-1983)

Power MOSFET

ZHEJIANG UNIVERSITY

(1983-1986)

Power Device and Me

(1989-1992)

Power integrated circuits

(2004-2017)

NC STATE

UNIVERSITY

WBG cost reduction

WBG in the grid

Power Electronics Research @ UT

- Power Management IC (PMIC)
 - Power system on chip design; High voltage integrated circuit; GaN HVIC
- > Power Semiconductor Devices (PSD)
 - Si, GaN, SiC, GaO power devices
 - Power electronics packaging
- > High Density Power Electronics (HDPE)
 - GaN/SiC High density power electronics; Driving, thermal and packaging techniques
 - Magnetic materials and devices
- > High Power Electronics (HPE)
 - High power electronics based on Si solution (IGBT, ETO)
 - Ultra high voltage SiC power electronics
 - Solid State Transformer; Solid State Circuit Breaker, Hybrid breaker
- Renewable Energy System, Microgrid and Smart Grid (RMS)
 - Solar/Wind/EV Systems/Wireless Power Transfer/Storage Systems
 - 380V DC Microgrid; Medium Voltage DC (MVDC); High Voltage DC (HVDC)
- Energy Internet (EI)
 - Blockchain/Communication/Energy router

SiC MOSFET: Achieved 100X reduction over Si and 10X over Si SJ Not much improvement over Si IGBT

TEXAS AT AUSTIN TATAUSTIN THE UNIVERSITY Direct Impact: Current Density Increase & Chip Size Reduction

Yole Developpement, 2012

Si/SiC: Vertical Power Devices

Since capacitance also increased by 10X so dV/dt will be similar unless J(WBG) >10X J(Si)

GaN: Lateral Device Construction

Bottomline:

UNIVERSITY OF

AT AUSTIN

- On Ron, not as good as vertical SiC, still much better than Si
- But even lower capacitance due to the lateral structure!
 C not simply scale with Achip

A Closer Look at Ron, Capacitance, Qrr

600V Devices Compared

	600V FETs	Ron (mohm)	Ciss (nF)	FOM 1 (Ron*C	iss)	Coss (nF)@400V	FOM2 (Ron*Cos	s)	Qrr(uC)	FOM3 (Ron*Qri	r)
	Si SJ	37	7.24	267		0.38	14		36	1332	
	SiC MOS	120	1.2	144		0.09	10.8		0.053	6.3	
	GaN HFET	25	.52	13		0.13	3.25		0.113	2.8	J
	Si SJ: Infineon IPW65R037C6. SiC MOSFET: Rohm SCT2120AF / GaN HFET: GaNSystem GS66516T										
Ga fa:	ate loop ster & fas	is gettin ster	g	D ď ď	rair V/d1 V/d1	i loop : increase? : ~ I/C=J/C	sp	F C E V	Reverse harge/lo Basically VBG dev	recover ss elimina /ices	y ited

80 mohm 1200VC SiC MOSFET, Rg,ext=0, V=800V, I=10A

650V GaN turn-off waveform

Zero turn-off loss is also achieved in hard-driven GaN

> Hard switching application

$$\begin{split} & \mathsf{E}_{\text{on}} = \mathsf{E}_{\text{on}}(\text{measured}) + \mathsf{E}_{\text{oss}} + \mathsf{Eoss} \text{ (diode + load cap)} \\ & \mathsf{E}_{\text{off}} = \mathsf{E}_{\text{off}}(\text{measured}) - \mathsf{E}_{\text{oss}} \sim 0 \text{ within ZTL region} \\ & \mathsf{E}_{\text{total}} = \mathsf{E}_{\text{on}} + \mathsf{E}_{\text{off}} = \mathsf{E}_{\text{on}}(\text{measured}) + \mathsf{E}_{\text{off}}(\text{measured}) \\ & \mathsf{Gate drive loss} \sim \mathsf{fs^*Vg^*Qg} \end{split}$$

> ZVS soft switching application

$$E_{on} \sim =0$$

 $E_{off} = E_{off}$ (measured) $-E_{oss} \sim 0$ within ZTL region
 $E_{total} = E_{on} + E_{off} = 0$
Gate drive loss ~ fs*Vg*Qg

- Switching frequency no longer a constraint
- Ron keeps going down so RMS current less a concern

3.38 MHz operation of 1200V SiC MOSFET (with ZVS turn-on)

*Guo and Huang at WIPDA 2015

Demonstrated zero switching loss

THE UNIVERSITY OF

1 MHz LLC Resonant Converter Prototype

1kW Isolated Bidirectional DC/DC

Controller board

Picture with 1 kWH battery

HV GaN device Prim	ary LV Si device
Storage capacity	1 kWh
Charge/discharge power	1 kW
LV side voltage (V_{LV})	(10.8~14.4)V
HV side voltage (V_{HV})	(350~410)V

*Xue and Huang, at IEEE PEDG 2015

THE UNIVERSITY OF TEXAS AT AUSTIN

Project Highlight 3: 3.2kW AC/DC PFC

- > Two Phase Totem-Pole true bridgeless PFC with full ZVS operation
- > HV 650V GaN daughter-boards
- > Extreme power density
- > Excellent thermal design

Power	3.2 kW
Topology	Two phase Totem-Pole PFC (300k-2 Mhz)
Input	Universal input AC
HV side voltage (V_{HV})	400V
Tested efficiency	>99%
Power density	130 W/inch ³

Only 35°C rise at full power

A S ITY OF 15 kV SiC MOSFET: 10-20X Increase in BV

Li Wang, Qianlai Zhu, Wensong Yu, Alex Q. Huang ,"A Study of Dynamic High Voltage Output Charge Measurement for 15 kV SiC 18 MOSFET," ECCE2016

$\frac{T_{He university of}}{T E X A S}_{AT AUSTIN}$

MVDC Application

Solid State Transformer (Smart Transformer, Digital Transformer)

14.5% loss reduction could mean 10 billion kWH of energy saving in US data center along

AT AUSTIN

SiC bipolar devices are more suitable for high power and high temperature operation

<2 ms interruption time

- t1 t2: mechanical switch delay: 1.5 ms;
- t2 t3: cap limited dv/dt (100A/0.5 uF~200V/us) rise b/c, ~40 us;
- t3 t4: MOV clamped at 7 kV, drives current to zero, ~105 us:
- t4 t5: diode reverse recovery and oscillation, ~100 us.

FMS Based on Thomson Coil

1ms opening speed demonstrated and tested

*Supported by an associated project. Results published @APEC2015 * Invention disclosure filed at NCSU

Conclusions

WBG power devices scale the Voltage and Frequency capability well above and beyond Si capability

- **Frequency** scaling in LV power system will substantially improve the power density while maintaining high efficiency
- Voltage*Frequency scaling of SiC MOSFET can transformer the MV and HV power delivery system into a smart AC or DC power delivery system
- Voltage scaling of SiC Bipolar device can enable future generation of AC and DC circuit breakers

We look forward to the new partnerships